Let ψ1:[0,∞)→R,ψ2:[0,∞)→R,f:[0,∞)→R and g:[0,∞)→R be functions such that f(0)=g(0)=0, ψ1(x)=e−x+x,x≥0 ψ2(x)=x2−2x−2e−x+2,x≥0 f(x)=x∫−x(|t|−t2)e−t2dt,x>0
and g(x)=x2∫0√te−tdt,x>0
Which of the following statements is TRUE?
A
f(√ln3)+g(√ln3)=13
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
For every x>1, there exists an α∈(1,x) such that ψ1(x)=1+αx
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
For every x>0, there exists a β∈(0,x) such that ψ2(x)=2x(ψ1(β)−1)
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
f is an increasing function on the interval [0,32]
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is C For every x>0, there exists a β∈(0,x) such that ψ2(x)=2x(ψ1(β)−1) g(x)=x2∫0√te−tdt,x>0
Let t=u2⇒dt=2udu ∴g(x)=x∫0ue−u2⋅2udu=2x∫0t2e−t2dt…(1)
and f(x)=x∫−x(|t|−t2)e−t2dt,x>0∴f(x)=2x∫0(t−t2)e−t2dt…(2)
From equation (1)+(2), we get f(x)+g(x)=x∫02te−t2dt
Let t2=p⇒2tdt=dp ∴f(x)+g(x)=x2∫0e−pdp=[−e−p]x20∴f(x)+g(x)=1−e−x2⇒f(√x)+g(√x)=1−e−x⇒f(√ln3)+g(√ln3)=1−e−ln3=1−13=23
From equation f(x)=x∫−x(|t|−t2)e−t2dt,x>0⇒f(x)=2x∫0(|t|−t2)e−t2dt⇒f′(x)=2(x−x2)e−x2⇒f′(x)=−2x(x−1)e−x2 ∴f(x) is increasing in (0,1)
ψ1(x)=e−x+x ⇒ψ′1(x)=1−e−x<1, for x>1
Then for α∈(1,x),ψ1(x)=1+αx does not hold true for α>1.
Now, ψ2(x)=x2−2x−2e−x+2 ⇒ψ′2(x)=2x−2+2e−x⇒ψ′2(x)=2ψ1(x)−2
From LMVT in (0,x), ψ2(x)−ψ2(0)x−0=ψ′2(β)
for β∈(∞,x) ⇒ψ2(x)=xψ′2(β)⇒ψ2(x)=2x(ψ1(β)−1)