Let ψ1:[0,∞)→R,ψ2:[0,∞)→R,f:[0,∞)→R and g:[0,∞)→R be functions such that f(0)=g(0)=0, ψ1(x)=e−x+x,x≥0 ψ2(x)=x2−2x−2e−x+2,x≥0 f(x)=x∫−x(|t|−t2)e−t2dt,x>0
and g(x)=x2∫0√te−tdt,x>0
Which of the following statements is TRUE?
A
ψ1(x)≤1, for all x>0
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
ψ2(x)≤0, for all x>0
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
f(x)≥1−e−x2−23x3+25x5, for all x∈(0,12)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
g(x)≤23x3−25x5+17x7, for all x∈(0,12)
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution
The correct option is Dg(x)≤23x3−25x5+17x7, for all x∈(0,12) ψ1(x)=e−x+x ⇒ψ′1(x)=1−e−x>0, for x>0
and ψ1(x)∈(1,∞)
ψ2(x)=x2−2x−2e−x+2 for x>0 ⇒ψ′2(x)=2x−2+2e−x=2(x+e−x)−2 ∵x+e−x∈(1,∞) from above part ∴2(x+e−x)∈(2,∞) ⇒2(x+e−x)−2∈(0,∞) ⇒ψ′2(x)>0
and ψ2(x)∈(ψ2(0),ψ2(x→∞)) ⇒ψ2(x)∈(0,∞) for x>0
and f(x)=∫x−x(|t|−t2)e−t2dt=2∫x0(t−t2)e−t2dt=∫x02te−t2dt−2∫x0t2e−t2dt=∫x02te−t2dt−2∫x0t2(1−t21!+t42!−t63!+…)dt∴f(x)≤1−e−x2−2∫x0t2(1−t21!)dt⇒f(x)≤1−e−x2−23x3+25x5 for all x∈(0,12)
Now, √te−t=√t(1−t1!+t22!−t33!+…,∞)
and √te−t≤t1/2−t3/2+12t5/2 ∴∫x20√te−tdt≤∫x20(t1/2−t3/2+12t5/2)dt⇒g(x)≤23x3−25x5+17x7 for all x∈(0,12)