f(x)=√x2+ax+4x2+bx+16 to be defined for all real a,
x2+ax+4⩾0 & x2+bx+16>0...(1)
x2+ax+4<0 & x2+bx+16<0 (both simultaneously)...(2)
(2)→ [Not Possible as Positive coefficient]
for (1) to be true Discriminant ⇒B2−4AC=D
for x2+ax+4≥0→D⩽0
x2+bx+16>0→D<0
a2−4×4×1⩽0 b2−4×16×1<0
a2⩽16 b2−64<0→b2<64
aϵ[−4,4] bϵ(−8,8)
Ordered Pair, (−4,−7)(−4,−6)(−4,−5)(−4,−4)(−4,−3)....(−4,7)
(−3,−7)(−3−6).......(−3,7)
.
.
.
(3,−7)(3,−6)....(3,7)
(4,−7)(4,−6)(4,−5)...(4,0).....(4,7)