wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Let R1 and R2 be two relations defined on a non empty set A. Which of the following statements is false? Give reasons in support of your answer.
(a) If R1 and R2 are reflexive, then so is R1R2
(b) If R1 and R2 are symmetric, then so is R1R2
(c) If R1 and R2 are transitive, then so is R1R2
(d) If R1 and R2 are transitive, then so is R1R2
(e) If R1 and R2 are symmetric, then so is R1R2

Open in App
Solution

(a) True, for all xA,(x,x)R1 and (x,x)R2(x,x)R1R2.
(b) True; (x,y)R1R2(x,y)R1or(x,y)R2(y,x)R1or(y,x)R2R1R2
(c) False; let A={1,2,3} and R1 and R2 be the relations defined on A as R1={(1,1),(1,2)} and R2={(2,2),(2,3)} respectively, then both R1 and R2 are transitive relations.However, R1R2={(1,1),(2,2),(1,2),(2,3)} is not transitive as (1,2)R1R2 and also (2,3)R1R2=but(1,3)R1R2
(d) True

(e) True, prove (iv) and (v) on the lines of (ii).

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Types of Relations
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon