Here, f=R−[R] is the fractional part of R. Thus, if I is the integral part of R, then R=I+f=(5√5+11)2n+1, and 0<f<1
Let f′=(5√5−11)2n+1. Then 0<f′<1 (as 5√5−11<1 )
Now, I+f−f′=(5√5+11)2n+1−(5√5−11)2n+1
=2[2n+1C1(5√5)2n×11+2n+1C3(5√5)2n−2×113+.....]
= an even integer
⇒f−f′ must also be an integer
⇒f−f′=0 ∵0<f<1,0<f′<1
⇒f=f′
∴,Rf=Rf′=(5√5+11)2n+1(5√5−11)2n+1
=(125−121)2n+1=42n+1=1024