Let r and n be positive integers such that 1≤r≤n. Then prove the following :
(i) nCrnCr−1=n−r+1r
(ii) nn−1Cr−1=(n−r+1)nCr−1
(iii) nCrn−1Cr−1=nr
(iv) nCr+2nCr−1+nCr−2=n+2Cr
(i) nCrnCr−1=n−r+1r
As we knows nCr=n!r!(n−2)!
∴nCr−1=n!(r−1)!(n−r+1)!nCrnCr−1=n!(r−1)!(n−r+1)!r!(n−r)!n!=(r−1)!(n−r+1)×(n−r)!r2×(r−1)!(n−r)!=n−r+1r
Hence proved.
(ii) nn−1Cr−1=(n−r+1)nCr−1
n×n−1Cr−1=n×(n−1)!(r−1)![(n−1)−(r−1)]!=n!×(n−r+1)(r−1)!(n−r)!(n−r+1)
multiplying numerator and denominator by (n-r+1)]
=(n−r+1)×n!(r−1)!(n−r+1)!=(n−r+1)nCr−1
Hence proved.
(iii) nCrn−1Cr−1=nr
nCr=n!r!(n−r)!n−1Cr−1=(n−1)!(r−1)!(n−1)−(r−1)!OrnCrn−1Cr−1=n!(r−1)!(n−r)!r!(n−r!(n−1)!=n×(n−1)!(r−1)!×(n−r)!r×(n−1)!(r−1)!×(n−r)!=nr
Hence proved.
(iv) nCr+2nCr−1+nCr−2=n+2Cr.
L.H.S.⇒nCr+2nCr−1+nCr−2=(nCr+nCr−1)+(nCr−2+nCr−1)=n+1Cr+n+1Cr−1[∵nCr+nCr−1=n+1Cr]=(n+1)+1Cr=n+2Cr