The correct option is A R and S transitive ⇒ R ∪ S is not transitive
(a) Let (a, b), (b, c) ϵ R ∪ S.
It is possible that (a, b) ϵ R - S and (b, c) ϵ S - R
In such a case, we cannot say that
(a, c) ϵ R or (a, c) ϵ S.
∴ may not be in R ∪ S.
∴ R ∪ S is not transitive
(b) Let (a, b), (b, c) ϵR ∩S.
∴ (a,b), (b,c) ϵ and (a,b), (b,c) ϵ S
∴ (a,c) ϵ R and (a,c) ϵ S
∴ (a,c) ϵ R ∩ ∴ R ∩ S is transitive.
(c) Let (a,b) ϵ R ∪ S
∴ (a,b) ϵ R or (a,b) ϵ S
Now, (a,b) ϵ R ⇒ (b,a) ϵ R (∵ R is symmetric)
(a,b) ϵ ⇒ (b, a) ϵ S (∴ S is symmetric)
∴ (b,a) ϵ R ∪ S ∴ R ∪ S is symmetric
(d) Let a ϵ A.
∴ (a,a) ϵ R and (a,a) ϵ S
∴ (a,a) ϵ R ∩ S is reflexive