Let r be the range of n(∀n≥1) observations x1x2....,xn if S=√∑nt=1(xi−¯x)2n−1, then
A
S<r√n2+1n−1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
S≥r√nn−1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
S=r√nn−1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
S<r√nn−1
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution
The correct option is CS<r√nn−1 Here range =r= largest value − smallest value =Max∣∣(xi−xj)∣∣(i≠j) and S=1n−1n∑i=1(xi−¯x)2 now (xi−¯x)2=[xi−x1+x2+.....+xnn]2 =1n2[(xi−x1)+(xi−x2)+...+(xi−xn)]2=1n2[(xi−x1)+(xi−x2)+...+(xi−xi−1)+(xi−xi+1)+...+(xi−xn)]2 ⇒.(xi−¯x)2≤1n2[(n−1)r]2 (∵|xi−xj|≤rsince the difference between terms(xi and xj) will be less than largest value )
⇒∑ni=1(xi−¯x)2n−1≤1n2(n−1)∑[(n−1)r]2 (summing up and dividing (n-1) both sides) ⇒1n21n−1n(n−1)2r2=n−1nr2<nn−1.r2(∵∀n>1n>1n) ∴S2<nn−1.r2 orS<r√nn−1