The given relation R in the set { 1,2,3,4 } is defined as R={( 1,2 ),( 2,2 ),( 1,1 ),( 4,4 ),( 1,3 ),( 3,3 ),( 3,2 )}.
( 1,1 ),( 2,2 ),( 3,3 ),( 4,4 )∈R.
So R is reflexive.
( 1,2 )∈R but ( 2,1 )∉R.
So, Ris not symmetric.
Let, a, b and c be elements in the given set such that ( a,b )and ( b,c )∈R.
It is observed that ( a,c )∈Rfor all ( a,b,c )∈{ 1,2,3,4 }. So Ris transitive.
The given relation, R is reflexive and transitive but not symmetric.
Hence, option (B) is correct.