The given relation R in the set N is defined as,
R={ ( a,b ): a=b−2,b>6 }
Since, b>6, so ( 2,4 )∉R.
Since, 3≠8−2, so ( 3,8 )∉R
Since, 8≠7−2, so ( 8,7 )∉R.
Since, 6=8−2, so ( 6,8 )∈R.
Thus, option (C) is correct.
Let R be the relation in the set N given by R = {(a, b): a = b − 2, b > 6}. Choose the correct answer.
(A) (2, 4) ∈ R (B) (3, 8) ∈R (C) (6, 8) ∈R (D) (8, 7) ∈ R