Given R=(5√5+11)2n+1 where f=R−[R]
Let us assume a number f1=(5√5−11)2n+1
∴5√5−11 lies between 0 and 1
⇒0<5√5−11<1
2n+1 is a positive integer.
∴0<f1<1
⇒R−f1=(5√5+11)2n+1−(5√5−11)2n+1
2(2n+1C1(5√5)2n(11)+2n+1C3(5√5)2n−2113+2n+1C5(5√5)2n−3115+...+2n+1C2n+1112n+1)
∴[R]+f−f1=even
⇒f−f1=integer
⇒0<f<1 and 0<f1<1
⇒f−f1∈I
⇒f−f1=0 ∵f1 cannot be negative or f1 cannot be negative.
⇒f=f1
Now Rf=Rf1 since f=f1
where R=(5√5+11)2n+1 since Rf=Rf1 where R=(5√5+11)2n+1
Rf=Rf1=(5√5+11)2n+1(5√5−11)2n+1
=((5√5)2−121)2n+1 using (a+b)(a+b)=a2−b2
=(125−121)2n+1=42n+1
Hence proved.