Let r,s,t be roots of the equation 8x3+1001x+2008=0. The value of (r+s)3+(s+t)3+(t+r)3is
The given equation can be written as 8x3+0x2+1001x+2008=0
The sum of the roots is,
r+s+t=−08
=0
The product of the roots is,
rst=−20088
=−251
Now, (r+s)3+(s+t)3+(t+r)3=(−t)3+(−r)3+(−s)3
=−(t3+r3+s3)
But r3+s3+t3=(r+s+t)(r2+s2+t2+−rs−st−tr)+3rst
=0+3(−251)
=−753
So, −(t3+r3+s3)=−(−753)
=753