wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Letr=limx0(sinxx)1xandm=limx0(sinxx)1x2, then -

A
r=0andm=e1/6
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
r=1andm=e1/6
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
r=0andm=e1/6
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
r=1andm=e1/6
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution

The correct option is D r=1andm=e1/6
r=limx0(sinxx)1x=limx0exp⎜ ⎜ ⎜ ⎜log(sinxx)x⎟ ⎟ ⎟ ⎟
Applying L'Hospital's rule
r=exp(limx0xcosxsinxxsinx)
Applying L'Hospital's rule
r=exp(limx0sinx(xcosx+sinx))=e0=1
And
m=limx0(sinxx)1x2=limx0exp⎜ ⎜ ⎜ ⎜log(sinxx)x2⎟ ⎟ ⎟ ⎟
Applying L'Hospital's rule
m=exp(limx0xcosxsinx2x2sinx)
Applying L'Hospital's rule
m=exp(limx0sinx2(xcosx+2sinx))
Applying L'Hospital's rule
m=exp(limx0cosx2(3cosxxsinx))=e16

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Basic Inverse Trigonometric Functions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon