Let S1,S2,S3 and S4 be four sets defined as
S1={y:y∈Z and y=x2+4x+3x2+7x+14 for x∈R}
S2={x:x∈Z and ∣∣∣1−|x|1+|x|∣∣∣≥13}
S3={x:x2−3x+2 sgn(x)=0}, where sgn(x) represents the signum function.
S4={(x,y):x,y∈Z, x2+y2≤4}.
List I has four entries and List II has five entries. Each entry of List I is to be correctly matched with a unique entry of List II.
List IList II (A)n(S1ΔS2)(P)9(B)n((S1×S2)∩(S2×S1))(Q)12(C)n(S1∩S2∩S′3)(R)36(D)n(S4×S3)(S)2(T)0
Which of the following is the only CORRECT combination?