Let S={(a,b):a,bϵZ,0≤a,b≤18}. The number of elements (x,y) in S such that 3x+4y+5 is divisible by 19 is?
I=3x+4y+55≤I≤131
Maximum at(18,18) and minumum at (0,0)
I is divided by 19
Case (i)
3x+4y+5=193x+4y=14y=14−3x4
Now we have to choose a put value of x from our given domain so that y also lies in our given domain
⇒x=2
Case (ii)
3x+4y+5=383x+4y=33y=33−3x4⇒x=3,7,11
Case (iii)
3x+4y+5=573x+4y=52y=52−3x4⇒x=0,4,8,12,16
Case (iv)
3x+4y+5=763x+4y=71y=71−3x4⇒x=1,5,9,13,17
Case (v)
3x+4y+5=953x+4y=90y=90−3x4⇒x=6,10,14,18
Case (vi)
3x+4y+5=1143x+4y=109y=109−3x4⇒x=15
19 cases are possible
Hence, option B is correct.