The correct options are
A minimum possible value of 2a+b is −π2
D maximum possible value of 2a+b is 11π2
We have,
α2−5α−6≤0
⇒(α−6)(α+1)≤0
⇒−1≤α≤6
Hence, a,b belong to [−1,6]
Now,
x2+7=4x−3sin(ax+b)
⇒x2−4x+7=−3sin(ax+b)
L.H.S≥3 and R.H.S≤3
Hence L.H.S=R.H.S=3
Equality occurs at x=2 and sin(ax+b)=−1
Hence,
sin(2a+b)=−1
⇒2a+b=3π2+2nπ
Now,
2a+b belong to [−3,18]
Also,
⇒2a+b=3π2+2nπ
Hence the maximum value of n=2 and minimum value of n=−1
So, options A, D are correct.