Let S be the area bounded by y=e|cos 4x|, x=0, y=0 and x=π, Then
S=2∫π20esin tdt
S>π2
S<2(2π2−1)
S≤1
S=4[∫π80ecos 4xdx+∫π4π8e−cos 4xdx] [Area is repeated 4 times]
Put 4x=t
⇒S=2∫π20esin tdt
Comparing it with 2∫π20etdt, we get,
⇒π<S<2(eπ2−1)
The area bounded by the y-axis, y = cos x and y = sin x when
A.
B.
C.
D.