The correct option is D 13
Thegivenrangesis100<x<200.So,thenumbersare−101,102,103,−−−−−199.Outofthemthefirstoddnumberdivisibleby3is105andlastsuchnumberis195.∵Weexcludetheevenmultiplesof3theneachnumbercanbewrittenbyadding6tothepreviousnumber.∴Nowthenumbersare105,111,117,−−−−−,195.ThisisanA.Pserieswithcommondifference6.Applyingtherulen=l−ab+1wegetthenumberoftermsisn=195−1056+1=16−−−−(1)Nowthenumberscanbewrittenas3×35,3×37,3×39−−−−,3×65Sothemultipliersof3are,ineachnumber35,37,39,−−−−,63,65.Outofthesewhichhave7asafactorare7×5,7×7and7×9.Total3−−−−(2)∴Totalnumberofnumberswhichcomplieswithallthegivenconditionis16−3=13[from(1)and(2)]∴Thesetshas13elements.