Let S be the set of real values of parameter λ for which the equation f(x) = 2x3 − 3(2+λ)x2 + 12λ x has exactly one local maximum and exactly one local minimum. Then S is a subset of
f(x) = 2x3 − 3(2+λ)x2 + 12λ x⇒ f′(x) = 6x2 − 6(2+λ)x + 12λf′(x) = 0 ⇒ x = 2, λ
If f(x) has exactly one local maximum and exactly one local minimum, then λ ≠ 2.