wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Let S be the set which contains all possible values of l,m,n,p,q,r for which A=l23p00m28qr0n215 be a nonsingular idempotent matrix. Then the sum of all the elements of the set S is .................

Open in App
Solution

Given A=123p00m28qr0n215
Now,A2=123p00m28qr0n215123p00m28qr0n215
A2=⎢ ⎢(123)2p(l2+m211)pqqr(m28)2q(m2+n223)r(l2+m28)rp(n215)2⎥ ⎥
Also,given A is non-singular idempotent matrix.
A2=A
⎢ ⎢(123)2p(l2+m211)pqqr(m28)2q(m2+n223)r(l2+m28)rp(n215)2⎥ ⎥=123p00m28qr0n215
(l23)(l24)=0l=±2,±3
(m28)(m29)=0m=±3,±22
(n215)(n216)=0n=±4,±15
Also, pq=0p=0 or q=0
qr=0q=0 or r=0
pr=0p=0 or r=0
Hence, S=0,0,0±2,±3,±4,±3,±22,±15
So, required sum =0

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Symmetric Matrix
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon