Let the G.P. be a,ar,ar2,ar3,...,arn−1,...
According to the given information,
S=a(rn−1)r−1P=an×r1+2+...+4n−1=anrn(n−1)2R=1a+1ar+...+1arn−1=rn−1+rn−2+...+r+1arn−1=1(rn−1)(r−1)×1arn−1=rn−1arn−1(r−1)∴P2Rn=a2nrn(n−1)(rn−1)nanrn(n−1)(r−1)n=an(rn−1)n(r−1)n=[a(rn−1)(r−1)]n=Sn
Hence, P2⋅Rn=Sn