The correct options are
A 1S2 is an integer
B nS=1
D 1S is an integer
We can write S as
S=a1+12a2+13a3+.....+1nan
where
ar=(−1)r−1(Cr−Cr−1+.....+.(−1)n−rCn)=(−1)n−1(C0−C1+.....+.(−1)n−rCn−r)[useCr=Cn−r]
But for k≥0
C0−C1+C2−.....+(−1)kCk
= Coefficient of xk in
(C0−C1x+C2x2−.....+(−1)nCnxn)(1+x+x2+....)
=Coefficient of xk in (1−x)n(1−x)−1
= coefficient of xk in (1−x)n−1
=(−1)k(n−1Ck)
Thus, ar=(−1)n−1(−1)n−r(n−1Cn−r)
=(−1)r−1(n−1Cn−r)
Now
S=n−1C0−12(n−1C1)+13(n−1C2)−.....+(−1)n−1n(n−1Cn−1)
=∫10(1−x)n−1dx=1n