Let S denotes the sum of series 323+424⋅3+526⋅3+627⋅5+⋯+∞. Then the of S−1 is
Open in App
Solution
Let S=∞∑r=1r+22r+1⋅r(r+1)⇒S=∞∑r=12(r+1)−r2r+1⋅r(r+1)⇒S=∞∑r=1(12r⋅r−12r+1⋅(r+1))⇒S=limn→∞(121×1−122×2)+(122×2−123×3)+(123×3−124×4)+(12n×n−12n+1×(n+1))⇒S=limn→∞(12−12n+1×(n+1))⇒S=12⇒S−1=2