Byju's Answer
Standard XII
Mathematics
Vn Method
Let S=∑n=1999...
Question
Let
S
=
9999
∑
n
=
1
1
(
√
n
+
√
n
+
1
)
(
4
√
n
+
4
√
n
+
1
)
, then
S
is equal to
Open in App
Solution
S
=
9999
∑
n
=
1
1
(
√
n
+
√
n
+
1
)
(
4
√
n
+
4
√
n
+
1
)
⇒
S
=
9999
∑
n
=
1
1
×
(
4
√
n
−
4
4
√
n
+
1
)
(
√
n
+
√
n
+
1
)
(
4
√
n
+
4
√
n
+
1
)
×
(
4
√
n
−
4
√
n
+
1
)
⇒
S
=
9999
∑
n
=
1
(
4
√
n
−
4
√
n
+
1
)
(
√
n
+
√
n
+
1
)
(
√
n
−
√
n
+
1
)
⇒
S
=
9999
∑
n
=
1
4
√
n
+
1
−
4
√
n
⇒
S
=
4
√
2
−
4
√
1
+
4
√
3
−
4
√
2
+
.
.
.
+
4
√
10000
−
4
√
9999
⇒
S
=
10
−
1
=
9
Suggest Corrections
0
Similar questions
Q.
Let
S
=
9999
∑
n
=
1
1
(
√
n
+
√
n
+
1
)
(
4
√
n
+
4
√
n
+
1
)
, then
S
is equal to
Q.
If
1
+
1
+
2
2
+
1
+
2
+
3
3
+
.
.
.
.
to n terms is S, then S is equal to
(a)
n
(
n
+
3
)
4
(b)
n
(
n
+
2
)
4
(c)
n
(
n
+
1
)
(
n
+
2
)
6
(d) n
2
Q.
Let
∑
n
n
=
1
r
4
=
f
(
n
)
. Then
∑
n
n
=
1
(
2
r
−
1
)
4
is equal to
Q.
If 1+
1
+
2
2
+
1
+
2
+
3
3
+
.
.
.
.
to n terms is S. Then, S is equal to
Q.
Let
S
n
=
1
2
n
+
1
√
4
n
2
−
1
+
1
√
4
n
2
−
4
+
.
.
.
.
.
.
.
.
+
1
√
3
n
2
+
2
n
−
1
,
n
∈
N
, if
lim
n
→
∞
S
n
=
α
then which of the following is defined
View More
Explore more
Vn Method
Standard XII Mathematics
Solve
Textbooks
Question Papers
Install app