Let Sk=1k+2k+...+nk and S(m,n)=∑mr=1m+1CrSr. Find S(3,2)
Open in App
Solution
Given Sk=1k+2k+....+nk .....(1) Also given S(m,n)=∑mr=1m+1CrSr ⇒S(3,n)=∑3r=14CrSr ⇒S(3,n)=4C1S1+4C2S2+4C3S3 ⇒S(3,n)=4(1+2+....n)+6(12+22+....+n2)+4(13+23+....+n3) ⇒S(3,n)=4n(n+1)2+6n(n+1)(2n+1)6+4n2(n+1)24 ⇒S(3,2)=12+30+36=78