The correct option is A R×[0,∞)
Point of non-differentiability can be at t=0
Checking for continuity at t=0
L.H.L.=limt→0−(|λ|e|t|−μ)⋅sin(2|t|)=0
R.H.L.=limt→0+(|λ|e|t|−μ)⋅sin(2|t|)=0
f(0)=0
∴L.H.L.=R.H.L.=f(0)
So the function is continuous at t=0
Now, check for differentiablity at t=0,
R.H.D.=limh→0f(h)−f(0)h−0⇒R.H.D.=limh→0(|λ|eh−μ)⋅sin(2h)h⇒R.H.D.=2(|λ|−μ)L.H.D.=limh→0f(−h)−f(0)−h−0⇒L.H.D.=limh→0(|λ|eh−μ)⋅sin(2h)−h⇒L.H.D.=−2(|λ|−μ)
So, for the function to be differentiable,
R.H.D.=L.H.D.⇒2(|λ|−μ)=−2(|λ|−μ)⇒|λ|=μ⇒λ∈R; μ∈[0,∞)
Hence, S is a subset of R×[0,∞)