Let S={(λ,μ)ϵR×R:f(t)=(|λ|e|t|−μ).sin(2|t|),tϵR,is a differentiable function}.
S={(λ,μ) ∈ R×R: f(t) =(|λ|e|t|−μ)sin2|t|,t∈R
f(t)=(|λ|e|t|−μ)sin(2|t|)
={(|λ|et−μ)sinett>0(|λ|e−t−μ)(−sin2t)t<0
f′(t)={(|λ|et)sin2t+(|λ|et−μ)(2coset)t>0+|λ|e−tsin2t+(|λ|e−t−μ)(−cos2t)t<0
Given f(t) is differentiable
∴ LHD=RHD at t=0
|λ|⋅sin2(0)+(|λ|eo−μ)2cos(∞)
=|λ|e−0sin2(∞)−2cos(0)(λ|e−0−μ)
0+(|λ|−μ)2=0−2(|λ|e−μ)
4(|λ|−μ)=0
|λ|=μ
S≡(λ,μ)={λ∈R&μ∈(0,∞)}
Set S is subset of R×[0,∞)