The correct option is D 782
S(1)+S(2)+S(3)+⋯+S(99)= Sum of digits of counting numbers 1 to 99.
We know that, in 1 to 99, there is 20 times 1, 20 times 2, 20 times 3, …,20 times 9 and 9 times zero.
So, S(1)+S(2)+S(3)+⋯+S(99)
=20×1+20×2+20×3+⋯+20×9+9×0
=20[1+2+3+⋯+9]
=20×9×(9+1)2 [∵n∑n=1n=n(n+1)2]
=20×9×102=9×10×10=900