The correct option is B ϕ (an empty set)
Given: f(x)=|x−π|⋅(e|x|−1)⋅sin|x|
Doubtful points =0,π
Now, at x=0
f′(0+)=limh→0+(|h−π|(e|h|−1)sin|h|h)
⇒f′(0+)=limh→0+(|π−h|(eh−1)sinhh)
⇒f′(0+)=0
⇒f′(0−)=limh→0+(|−h−π|(e|−h|−1)sin|−h|−h)
⇒f′(0−)=0
And, at x=π
f′(π+)=limh→0+(|h|.(e|π+h|−1)sin|π+h|h)
⇒f′(π+)=limh→0+(h(eπ+h−1)⋅(−sinh)h)
⇒f′(π+)=0
f′(π−)=limh→0+(h(eπ−h−1)sinh−h)
⇒f′(π−)=0
Hence, f(x) is diff. for all x∈R.