The correct option is B n(n+1)(n+2)6
Since, Sn denote the sum of cubes of the first n natural numbers.
Therefore, Sn=n2(n+1)24
Since, sn denote the sum of the first n natural numbers.
Therefore, sn=n(n+1)2
Now, Tn=∑nr=1Srsr=∑nr=1r(r+1)2
⇒Tn=12{∑nr=1r2+∑nr=1r}=n(n+1)(2n+1)12+n(n+1)4
⇒Tn=n(n+1)(n+2)6