The correct option is C n(n+1)(n+2)6
It is given that,
Sn=13+23+33+....+n3
Sn=[n(n+1)2]2 ...(i)
and,
Sn=1+2+3+....+n
Sn=n(n+1)2 ...(ii)
From (i) & (ii),
Sn=(sn)2
⇒Snsn=sn
⇒∑nr=1Srsr=∑nr=1sr
⇒∑nr=1Srsr=∑nr=1r(r+1)2
(From eq. (ii))
⇒∑nr=1Srsr=12∑nr=1(r2+r)
⇒∑nr=1Srsr=12∑nr=1(r2+r)
⇒∑nr=1Srsr=12[∑nr=1r2+∑nr=1r]
⇒∑nr=1Srsr=12[n(n+1)(2n+1)6+n(n+1)2]
⇒∑nr=1Srsr=n(n+1)4[2n+13+1]
=n(n+1)4×2(n+2)3
=n(n+1)(n+2)6
∴∑nr=1Srsr=n(n+1)(n+2)6
∴ Correct option is (A)