The correct option is B −320
Let a be the first term and d is common difference of the A.P.
Given, S4=42(2a+3d)=16
⇒2a+3d=8 …(1)
and S6=62(2a+5d)=−48
⇒2a+5d=−16 …(2)
Solving (1) and (2), we get
a=22 and d=−12
∴S10=102(2a+9d)=10×22+45×(−12)
∴S10=−320
Alternate Approach––––––––––––––––––––––
S6−S4=a5+a6=−48−16=−64
If there are 10 terms in an A.P., then the mean of the 10 terms is given by=a5+a62=−32
Therefore, Sum S10=−32×10=−320