The correct options are
A 1056
D 1332
4n∑k=1(−1)k(k+1)2k2=−12−22+32+42−52−62+72+82−.......+(4n)2=(−12+32−52+72−....+(4n−1)2)+(−22+42−62+82−....+(4n)2)=2(4+12+20+....(8n−4))ntermsinA.P.+2(6+14+22+....(8n−2))ntermsinA.P.=n(8n)+n(8n+4).....(usesumofA.P.formula)=n(16n+4)
.
Substituting n=8 gives the sum as 1056. Hence, option A is possible.
Similarly, substituting n=9 gives the sum as 1332. Hence, option D is also possible.