Let Tk=k(k−1)4/3+(k2−1)2/3+(k+1)4/3
Since a3−b3=(a−b)(a2+ab+b2),
Tk=k[(k+1)2/3−(k−1)2/3][(k+1)2/3]3−[(k−1)2/3]3Tk=14[(k+1)2/3−(k−1)2/3]
T1=14[22/3−0]T2=14[32/3−12/3]T3=14[42/3−22/3] ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅T(n−1)=14[(n)2/3−(n−2)2/3]Tn=14[(n+1)2/3−(n−1)2/3]
Sn=T1+T2+T3+⋯+TnSn=14[(n+1)2/3+n2/3−1−0]=14[(n+1)2/3+n2/3−1]
Snn2/3=14[(1+1n)2/3+1−1n2/3]⇒limn→∞Snn2/3=12