Let Sn=nC0nC1+nC1nC2+.....+nCn−1nCn, where n∈N. If Sn+1Sn=154 then the sum of all possible values of ′n′ is
A
4
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
6
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
8
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
10
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is B6 Sn=nC0nC1+nC1nC2+.....+nCn−1nCn(1+x)n=nC0+nC1x+nC2x2+....+nCnxn(x+1)n=nC0xn+nC1xn−1+nC2xn−2+....+nCn(1+x)2n=[nC0+nC1x+nC2x2+....+nCnxn]×[nC0xn+nC1xn−1+nC2xn−2+....+nCn]coefficientofxn−12nCn−1=nC0nC1+nC1nC2+...+nCn−1nCnSn=2nCn−1Sn+1Sn=2n+2Cn2nCn−1=154(2n+2)!n!(n+2)!2n!(n−1)!2n!=154(2n+2)!n!(n+2)!×(n−1)!×(n+1)!2n!=154(2n+2)(2n+1)n(n+2)=1544(4n2+6n+2)=15(n2+2n)n2−6n+8=0(n−4)(n−2)=0n=2andn=4sumofallvaluesofn=2+4=6Hence,optionBisthecorrectanswer.