The correct option is B ln∣∣∣e2nsinθsin(2nθ)∣∣∣
cotθ−tanθ=1tanθ−tanθ =2(1−tan2θ)2tanθ =2tan2θ=2cot2θ
⇒tanθ=cotθ−2cot2θ
Replacing θ by 2n−1θ
tan(2n−1θ)=cot(2n−1θ)−2cot(2nθ)
Sn=tanθ+2tan2θ+4tan4θ+⋯+2n−1tan(2n−1θ)
tn=2n−1tan(2n−1θ)=2n−1cot(2n−1θ)−2ncot(2nθ)
Sn=t1+t2+t3+⋯+tn
=(cotθ−2cot2θ)+(2cot2θ−4cot4θ) +⋯+[2n−1cot(2n−1θ)−2ncot(2nθ)]
=cotθ−2ncot(2nθ)
F(θ)=∫Sndθ =ln|sinθ|−ln|sin(2nθ)|+C =ln∣∣∣sinθsin(2nθ)∣∣∣+C
Now, limθ→0F(θ)=1
⇒limθ→0ln∣∣∣sinθsin(2nθ)∣∣∣+C=1
⇒limθ→0ln∣∣
∣
∣
∣
∣∣sinθθ×θsin(2nθ)(2nθ)×(2nθ)∣∣
∣
∣
∣
∣∣+C=1
⇒ln(2−n)+C=1⇒−nln(2)+C=1
⇒C=lne+nln2
⇒C=ln(e2n)
⇒F(θ)=ln∣∣∣sinθsin(2nθ)∣∣∣+ln(e2n)
=ln∣∣∣e2nsinθsin(2nθ)∣∣∣
Alternate solution:
We know that,
∫tannθ dθ=1n ln|secnθ|+C∫Sn dθ=ln|secθ⋅sec2θ⋅sec4θ⋯n terms|+C
Now, secθ⋅sec2θ⋅sec4θ⋯n terms
=1cosθ⋅cos2θ⋅cos4θ⋯cos2n−1θ
=2nsinθsin(2nθ)
So, ∫Sn dθ=ln∣∣∣2nsinθsin(2nθ)∣∣∣+C
⇒F(θ)=ln∣∣∣2nsinθsin(2nθ)∣∣∣+C
⇒limθ→0F(θ)=C=1
∴F(θ)=ln∣∣∣e2nsinθsin(2nθ)∣∣∣