wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Let Sn=tanθ+2tan2θ+4tan4θ++n terms and F(θ)=Sn dθ. If limθ0F(θ)=1, then F(θ) is

A
ln2nsinθsin(2nθ)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
lne2nsinθsin(2nθ)
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
ln102nsinθsin(2nθ)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
lnsinθsin(2nθ)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is B lne2nsinθsin(2nθ)
cotθtanθ=1tanθtanθ =2(1tan2θ)2tanθ =2tan2θ=2cot2θ
tanθ=cotθ2cot2θ

Replacing θ by 2n1θ
tan(2n1θ)=cot(2n1θ)2cot(2nθ)

Sn=tanθ+2tan2θ+4tan4θ++2n1tan(2n1θ)
tn=2n1tan(2n1θ)=2n1cot(2n1θ)2ncot(2nθ)

Sn=t1+t2+t3++tn
=(cotθ2cot2θ)+(2cot2θ4cot4θ) ++[2n1cot(2n1θ)2ncot(2nθ)]
=cotθ2ncot(2nθ)

F(θ)=Sndθ =ln|sinθ|ln|sin(2nθ)|+C =lnsinθsin(2nθ)+C

Now, limθ0F(θ)=1
limθ0lnsinθsin(2nθ)+C=1

limθ0ln∣ ∣ ∣ ∣ ∣sinθθ×θsin(2nθ)(2nθ)×(2nθ)∣ ∣ ∣ ∣ ∣+C=1
ln(2n)+C=1nln(2)+C=1
C=lne+nln2
C=ln(e2n)

F(θ)=lnsinθsin(2nθ)+ln(e2n)
=lne2nsinθsin(2nθ)


Alternate solution:
We know that,
tannθ dθ=1n ln|secnθ|+CSn dθ=ln|secθsec2θsec4θn terms|+C

Now, secθsec2θsec4θn terms

=1cosθcos2θcos4θcos2n1θ

=2nsinθsin(2nθ)

So, Sn dθ=ln2nsinθsin(2nθ)+C

F(θ)=ln2nsinθsin(2nθ)+C

limθ0F(θ)=C=1

F(θ)=lne2nsinθsin(2nθ)

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Standard Formulae 2
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon