Sn(x)=loga1/2x+loga1/3x+loga1/6x+loga1/11x+loga1/18x+loga1/27x+⋯ up to n-terms
⇒Sn(x)=2logax+3logax+6logax+11logax+⋯
⇒Sn(x)=(logax)(2+3+6+11+⋯)
Sr=2+3+6+11+⋯
General term, Tr=r2−2r+3
Sn(x)=n∑r=1(logax)(r2−2r+3)
⇒S24(x)=(logax)24∑r=1(r2−2r+3)
⇒1093=4372logax
⇒logax=14
⇒x=a1/4 ⋯(1)
S12(2x)=loga(2x)12∑r=1(r2−2r+3)
⇒265=530loga(2x)
⇒loga(2x)=12
⇒2x=a1/2 ⋯(2)
After solving (1) and (2), we get
a1/4=2
⇒a=16