Let S⊂(0,π) denotes the set of values of x satisfying the equation 81+|cosx|+cos2x+|cos3x|+⋯+∞=43. Then, S=
A
{π3}
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
{π3,−2π3}
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
{−π3,2π3}
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
{π3,2π3}
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution
The correct option is D{π3,2π3} We know that, |cosx|<1∀x∈(0,π)
So, 1+|cosx|+cos2x+|cos3x|+⋯+∞=11−|cosx|
Therefore, 81+|cosx|+cos2x+|cos3x|+⋯+∞=43⇒23(1+|cosx|+cos2x+|cos3x|+⋯+∞)=26⇒11−|cosx|=2⇒|cosx|=12⇒cosx=±12⇒x=π3,2π3⇒S={π3,2π3}