The correct option is D contains exactly two elements
Given: 2|√x−3|+√x(√x−6)+6=0
Case (1): when 0≤√x<3
∴−2(√x−3)+√x(√x−6)+6=0
⇒6−2√x+(√x)2−6√x+6=0
⇒(√x)2−8√x+12=0
⇒(√x−6)(√x−2)=0
⇒√x=2,√x=6 (rejected)
∴x=4
Case (2): when √x≥3
∴2(√x−3)+√x(√x−6)+6=0
⇒2√x−6+(√x)2−6√x+6=0
⇒(√x)2−4√x=0
⇒√x(√x−4)=0
⇒√x=4,√x=0 (rejected)
∴x=16
Hence, S contains exactly two elements.