The correct option is
C 0√3secx+cscx+2(tanx−cotx)=0
⇒√3secx+cscx=2(cotx−tanx)
⇒(√3secx+cscx)2=cotx−tanx
⇒√32secx+12cscx=cotx−tanx by dividing both sides by 2
We know that secx=1cosx,cscx=1sinx,tanx=sinxcosx and cotx=cosxsinx
⇒√321cosx+121sinx=cosxsinx−sinxcosx
⇒√32sinxsinxcosx+12cosxsinxcosx=cos2xsinxcosx−sin2xcosxsinx
⇒√32sinx+12cosx=cos2x−sin2x
⇒sinπ3sinx+cosπ3cosx=cos2x where √32=sinπ3 and 12=cosπ3
⇒cos(π3−x)=cos2x
⇒2x=2nπ±(x−π3) since if cosθ=cosα⇒θ=2nπ±α
⇒2x=2nπ+x−π3 or 2x=2nπ−x+π3
⇒x=2nπ−π3 or 3x=2nπ+π3 or x=2nπ3+π9
For n=0,x=−π3,π9
For n=−1,x=−7π3 which does not lie between (−π,π)
and x=−2π3+π9=−5π9∈(−π,π)
For n=2,x=5π3 does not lie between (−π,π)
and x=2π3+π9=7π9∈(−π,π)
∴x=−π3,π9,−5π9,7π9
Sum of all the solutions=−π3+π9−5π9+7π9=−3π9+π9−5π9+7π9=0