Let Sn(x)=loga12x+loga13x+loga16x+loga111x........ up to n-terms, where a>1 If S24(x)=1093andS12(2x)=265 then value of a is equal to
Determine the value of a
On solving the given function, we get:
Sn(x)=loga12x+loga13x+loga16x+loga111x........Sn(x)=logax2+logax3+logax6+logax11........Sn(x)=logax2+3+6+11[∵loga+logb=logab]
Now,Tn=2+(n-1)2
Sn=∑n=1Tn=∑n=12+(n-1)2=2n+(n-1)(n)(2n-1)6
Therefore, we can write
Sn(x)=logax2n+(n-1)(n)(2n-1)6Now,S24(x)=logax48+23.24.476⇒1093=4372logax⇒logax=14.................(1)
Also,
S12(2x)=265loga2x24+11.12.236=265⇒530loga2x=265⇒loga2x=12.............(2)
On subtracting (2)-(1), we get:
loga2x-logax=12-14loga2=14a=16
Therefore the value of ais16.