wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Let Sn(x)=loga12x+loga13x+loga16x+loga111x........ up to n-terms, where a>1 If S24(x)=1093andS12(2x)=265 then value of a is equal to


Open in App
Solution

Determine the value of a

On solving the given function, we get:

Sn(x)=loga12x+loga13x+loga16x+loga111x........Sn(x)=logax2+logax3+logax6+logax11........Sn(x)=logax2+3+6+11[∵loga+logb=logab]

Now,Tn=2+(n-1)2

Sn=∑n=1Tn=∑n=12+(n-1)2=2n+(n-1)(n)(2n-1)6

Therefore, we can write

Sn(x)=logax2n+(n-1)(n)(2n-1)6Now,S24(x)=logax48+23.24.476⇒1093=4372logax⇒logax=14.................(1)

Also,

S12(2x)=265loga2x24+11.12.236=265⇒530loga2x=265⇒loga2x=12.............(2)

On subtracting (2)-(1), we get:

loga2x-logax=12-14loga2=14a=16

Therefore the value of ais16.


flag
Suggest Corrections
thumbs-up
17
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
General Term
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon