Let sum of n, 2n, 3n terms of an A.P. be S1, S2 and S3 respectively, show that S3=3(S2−S1)
Let 'a' be the 1st term and 'd' be the common difference of the given A.P.
∴Sn=n2[2a+(n−1)d] ..... (1)
∴S2=2n2[2a+(2n−1)d] ..... (2)
∴S3=3n2[2a+(3n−1)d] ..... (3)
Now S2−S1=2n2[2a+(2n−1)d]−n2[2a+(n−1)d]
=n2[4a+4nd−2d−2a−nd+d]
=n2[2a+3nd−d]
=n2[2a+(3n−1)d]
∴3(S2−S1)=3n2[2a+(3n−1)d]=S3 [∵S3=3n2[2a+(3n−1)d]]
Thus, S3=3(S2−S1)