Let t1=cosA+cosB−cos(A+B) and t2=4sinA2.sinB2[2cos2(A+B4)−1] then t1−t2 equals
If cos(A-B) = 3/5 and tanA*tanB = 2 then
(a) cosA*cosB= 1/5 (c) cos(A+B)= -1/5
(b) sinA*sinB= 2/5 (d) sinA*sinB=4/5
If cosA+cosB=12 and sinA+sinB=14, prove that: tan(A+B2)=12
If sinA=sinB and cosA=cosB, then
[EAMCET 1994]