No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
None of these
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is C(2018)×(2016)×(2014)×....×(2)(2017)×(2015)×(2013)×....×(1) Tn+2=Tn+1Tn+1 ⇒Tn+2−Tn=1Tn+1 ⇒Tn+2⋅Tn+1−Tn+1⋅Tn=1
Now, let an=Tn+1⋅Tn ⇒an+1−an=1 So, a1,a2,a3,...,an+1 form an A.P. with common difference, d=1; and first term a1=T2⋅T1=(1)(1)=1 Now, nth term of this AP is an=a1+(n−1)d an=1+(n−1)1 an=n So, Tn+1⋅Tn=n So, (T2019)(T2018)=2018 and (T2018)(T2017)=2017
⇒T2019=2018T2018=2018(2017T2017)−(20182017)T2017
Thus, T2019=(20182017)T2017
Similarly, T2017=(20162015)T2015
T2015=(20142013)T2013
T3=(21)T2=2
Thus, T2019=(20182017)(20162015)(20142013)(21)
So T2019=(2018)(2016)(2014)(2)(2017)(2015)(2013).(3)(1) So option B.