Let [t] denote the greatest integer less than or equal to t. Then the value of the integral 101∫−3([sin(πx)]+e[cos(2πx)])dx is equal to
Open in App
Solution
I=101∫−3([sin(πx)]+e[cos(2πx)])dx [sinπx] is periodic with period 2 and e[cos(2πx)] is periodic with period 1.
So, I=522∫0([sinπx]+e[cos2πx])dx =52⎧⎪
⎪
⎪⎨⎪
⎪
⎪⎩2∫1−1dx+34∫14e−1dx+74∫54e−1dx+0∫14e0dx+54∫34e0dx+2∫74e0dx⎫⎪
⎪
⎪⎬⎪
⎪
⎪⎭ =52e