The correct options are
A T10=1214
D S199−S198=104
Given series is 131+13+231+3+13+23+331+3+5+⋯n terms
Now, the nth term of the series is
Tn=13+23+⋯+n31+3+5+⋯+(2n−1)⇒Tn=[n(n+1)2]2n2(∵ Sum of odd natural numbers upto 2n−1 is n2)⇒Tn=14(n2+2n+1)
Now, Sn=n∑r=1Tr
⇒Sn=14n∑r=1[n2+2n+1]
⇒Sn=14[n(n+1)(2n+1)6+n(n+1)+n]⇒Sn=n24[(n+1)(2n+7)+6]⇒Sn=n24[2n2+9n+13]
Therefore, T10=1214
S10=1024(200+90+13)⇒S10=512×303=5054
10∑r=1√Tr=10∑r=1(r+1)2⇒10∑r=1√Tr=12[2+3+⋯+11]⇒10∑r=1√Tr=12[11×122−1]=652S199−S198=T199⇒S199−S198=14(200)2=104