Let tanα.x+sinα.y=α and αcosecα.x+cosα.y=1 be two variable straight line, α being the parameter. Let P be the point of intersection of the lines. In the limiting position when α→0, the point P lies on the line
A
x=2
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
x=−1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
y+1=0
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
y=2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct options are Ax=2 Cy+1=0 Solving tanα.x+sinα.y=α and αcosecα.x+cosα.y=1, we get x=αcosα−sinαsinα−α and y=α−xtanαsinα limα→0x=limα→0cosα−αsinα−cosαcosα−1=limα→0αsinα2sin2α2=limα→04(α2)2sinαα(sinα2)22=2limα→0y=limα→αα−xtanαsinα=limα→0(αsinα−xcosα)=1−2=−1 Hence P=(2,−1)