wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Let tanθ+sinθ=m and tanθsinθ=n then show that tan2θsin2θ=mn.

Open in App
Solution

Given tanθ+sinθ=m and tanθsinθ=n
Now,
(tanθ+sinθ)(tanθsinθ)=mn
or, tan2θsin2θ=mn
or, (sin2θcos2θsin2θ)=mn
or, sin2θcos2θ(1cos2θ)=mn
or, sin2θcos2θsin2θ=mn [1cos2θ=sin2θ]
or, tan2θsin2θ=mn.

1175729_1194991_ans_2215e4ce455444f09de29e28e451d714.jpg

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
General Solutions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon