Let the area of the triangle formed by (1,2),(−3,0) and any point on the line x−2y+k=0 is 5 sq. units. If possible values of k are k1,k2 then locus of foot of the perpendicular drawn from (k1,0) to a variable line passing through (0,k2) is
A
x2+y2=2x−8y
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
x2+y2+2x−8y=0
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
x2+y2+8x−2y=0
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
x2+y2=8x+2y
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is Cx2+y2+8x−2y=0 Let A=(1,2),B=(−3,0)
and locus of variable point be C=(x,y) △ABC=12∣∣
∣∣xy1121−301∣∣
∣∣=5 ⇒|(2x−4y+6)|=10⇒|x−2y+3|=5 ⇒x−2y+3=±5 ⇒x−2y+8=0orx−2y−2=0 ⇒k1=−2,k2=8 or k1=8,k2=−2
Case (i):k1=−2,k2=8 ∴P=(k1,0)=(−2,0),Q=(0,k2)=(0,8)
Slope of PR⋅ slope of RQ=−1 ⇒yx+2⋅y−8x=−1⇒x(x+2)+y(y−8)=0⇒x2+y2+2x−8y=0
Case (ii):k1=8,k2=−2
Slope of PR⋅ slope of RQ=−1 ⇒yx−8⋅y+2x=−1⇒x(x−8)+y(y+2)=0⇒x2+y2−8x+2y=0