Given : (x+ax2)n
General term of the expansion is
Tr+1=nCrxn−r(ax2)r⇒Tr+1=nCrarxn−3r
Now,
coefficient of T3coefficient of T4=128⇒nC2⋅a2nC3⋅a3=32⇒3a(n−2)=32⇒a(n−2)=2⋯(i)
Also,
coefficient of T4coefficient of T5=83⇒nC3⋅a3nC4⋅a4=83⇒4a(n−3)=83⇒a(n−3)=32⋯(ii)
Using equations (i) and (ii), we get
n=6, a=12
Now, the term independent of x is
n−3r=0⇒r=2∴T3=6C2(12)2=154=3.75=4